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1. INTRODUCTION

The subject of this paper is the rational Chebyshev approximation of a
continuous real valued function of several real variables. For simplicity
our attention is focused on functions defined on the rectangle D =
[-1,1] x [-1,1].

Let F be a continuous real valued function defined on D. For
each A = (aoo ,... , an,' ) E E" +v +... +V -'-n+l and each B = (boo ,... , b""u ) E

n 0 1 n' '/"11.

Ell +" +"'+11 +m+1 define IR. to be the class of rational functions of the formo 1 m

L n L"R(C' x I) = peA; x, y) = ;=0 k~O aikxiyk (1)
, . , J Q(B' X J!) "m "U; b, XiV I '

" L..j=O L..l~O ,I •

where C = (A; B) and Q(B; x, y) > 0 on D.
We formulate the problem of best rational Chebyshev approximation to F

from IR. as follows. An element R(C*; x, y) E IR. is sought such that

sup IF(x, y) - R(C; x, )')!
(x,Y)ED

is a minimum for C = C*. R(C*; x, y) is called a Chebyshev approximation
or a best uniform approximation to F.

*Presented in part by the first named author at the Symposium on Approximation
Theory and its Applications, Michigan State University, March 22, 1972.
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distribute reprints for Governmental purposes notwithstanding any copyright notation
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BEST RATIONAL PRODUCT APPROXIMATIONS

The following example demonstrates that a best uniform approximation
from IR to a given FE qD] may not exist.

EXAMPLE 1. Let
I

_ \(x + 1)2 + ~Y + 1)2,
F(x, Y) - ~ x + Y I 2

{ x + 1

-1 ~ x ~ 1
-1 < y ~ 1
-1 ~ x ~ 1
J' = -1

and consider the class of rational functions IR = {R(C; x)}, where R(C: x) is
(1) with n = 2, m = 1, Vi = 2 and f11j = 1, i = 0, 1,2, j = 0, L

For each E > °define

R(C . x v) = (x + 1)2 + (y + 1)2
., ,. X+y+2+E

Then R(C.; x, y) -- F(x, y) uniformly on [-1, 1] x [-1, I] as E -- O.
However, F rt R

Loeb [6] showed that even when a continuous function F possesses a best
approximation R, uniqueness could only occur if an appropriate vector space
is a Haar space. The scarcity of multidimensional Haar spaces was
demonstrated by Mairhuber [7].

The lack of existence or uniqueness of a best approximation and the
accompanying computational difficulties have been a roadblock in the
development of rational Chebyshev approximation. To overcome these
problems, Henry and Brown [4J introduced best rational product approxi
mations as follows.

We first define a class of rational functions. Let

R(C' . = peA; x)
,x) Q(B; x)

1'1\
\.L...)

where C = (A; B) = (00 ,01 "", an ; bo , hI, ..., bon) satisfies

(i) Q(B; x) > °for all x E [-1, 1J;
(ii) peA; x) and Q(B; x) have no common factors other than constants;

and
(iii) maxj~o ... .,1Il I bj I = 1.

DEFINITION 1. Let !R(n, m) denote the class of rational functions consisting
of all R(C; x) as above satisfying conditions (i), (ii) and (iii), and the
zero function which we allow the unique representation R(Co ; x} V'ihere
Co = (0,0, ... ,0; 1,0,... ,0).
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DEFINITION 2. For each fixed y E [-1, 1] let Fy denote the univariate
function defined for -1 ~ x ~ -1 by

Let

Fix) = F(x, y).

R(C(y)' x) = P(A(y); x)
, Q(B(y); x)

(3)

(4)

denote the best uniform approximation to Fy(x) from !R(n, m). That is
SUP_l~X() I Fy(x) - R(C; x)1 is a minimum for C = C(y) = (A(y); B(y».
Note that for each y E [-1, 1] there exists a unique choice for C(y) and thus
it is a well defined function.

DEFINITION 3. Let the components ai(Y) and biy) of the vector C(y)
be best approximated in the Chebyshev sense on [-1, 1] by, respectively,

and

Then,

Vi

PC/.;Cy) = L aikyk,
k~O

Uj

QfJj(y) = L bizyl,
z~o

i = 0, 1,... , n

j = 0, 1,... ,m

(5)

(6)

(7)

is called the best rational product approximation, with respect to y.
In general this approximation may not exist. If C(y) is continuous then the

approximations PC/..(y) and QI3.(Y) exist. Furthermore we must insure the
nonvanishing of the denominator I:;':o QfJ/y) Xi. This can be achieved by
selecting the degrees Ui, j = 0, 1,..., m sufficiently large so that
2:;:0 QfJ.(y) Xi > 0. This is possible since 2:.;:0 bi(y) Xi > °on [-1, 1] X,
[-1,1].

With the continuity of C(y) and sufficiently large degrees Ui ,j = 0, 1,..., m
the best rational product approximation exists and is unique. In Section 2
we consider sufficient conditions for the continuity of C(y), various possible
types of discontinuous and a method to combat the most common varieties.

Two alternatives to Definition 3 have been considered in the literature.
If the variable x is fixed first, rather than y, then a product approximation
with respect to x can be similarly defined. It is shown in [9] that in general
these two approximations are distinct. A second alternative is to approximate
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the components a;(y) and biy) by rational functions rather than polynomials.
This variation is considered in [4]. Either variant is handled analogously to
that considered below.

2. THE CONTINUITY OR DISCONTINUITY OF THE VECTOR C(y)

We now consider sufficient conditions for the continuity of the parameter
vector C(y).

DEFINITION 4. R(C; x) = [peA; x)/Q(B; x)] E ~(n, m) is said to be of
varisolvent degree

.f1(C) = 1. 1 + max{n + 8Q, 111 + oP},
1 + n,

R(C; x) ::;::: 0
R(C;x) =0

(8)

where OP and oQ denote the degrees of peA; x) and Q(B; x), respectively.
Henry and Brown [4] proved the following theorem giving sufficient

conditions for the continuity of the vector C(y).

THEOREM 1. Supposethatforjixedy* E [-1, l],A(C(y*) = n +m + 1.
Then the function C(y) is continuous at y*.

We improve this result somewhat.

THEOREM 2. Suppose that JI{(C(y) is constant on (a, b) C [-1, 1]. Then
C(y) is continuous on (a, b).

Proof One proof of this result is essentially identical with the proof of
Theorem 1 presented in [4]. As an alternative consider the following:

Let R(C(y); x) = [P(A(y); x)/Q(B(y); x)] denote the best approximation
to F y from ~(n, m) and suppose that

JlI(C(y)) = k foran )'E(a,b)C[-I,l]

Let OP and cQ denote the degrees of P(A(y); x) and Q(B(y); x), respectively.

Case 1. k = n + 1 and n < m.
Then since

we must have

1 + max{n + 3Q, m + oP} ?o 1 + m > 1 + n, (9)

R(C(y); x) - 0 " -1 <; x <; 1
lor l'-1 <;y <;

Thus C(y) = Co = (0,0, ...,0; 1,0,... ,0) for -1 <; y <; L
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, Case 2. Either k = n + 1 and n;?: m, or k > n + 1. Then k 3
max{1 + n, 1 + m}.

The following lemma combined with Theorem 1 completes this proof.

LEMMA 1. Let R(CCy); x) and k be as in Case 2 and let

N=k-m-1 and M=k-n-1. (10)

Then R(CCy); x) is also the best approximation to Fyfrom the class ~(N, M)
and has degree N + M + 1 in that class. (Note that the degree of a rational
function depends on which class of rationals we are considering.)

Proof Since ~(N, M) c: ~(n, m), if R(CCy); x) = 0, then ./h'(C(y)) =
n + 1, N = n - m, M = °and R(CCy); x) is also the best approximation to
Fy in ~(N, M). Furthermore, R(CCy); x) = °has degree 1 + N = 1 + N + M
in that class.

If R(CCy); x) -:- °then

1 + n + oQ < k, or equivalently, oQ < k - n - 1 = M (11)
and

1 + 111 + oP < k, or equivalently, oP < k - m - 1 = N, (12)

with equality holding in at least one of (11) and (12).
Therefore R(C(y); x) E ~(N, M), and in this class R(CCy); x) has degree

1 + max{N + oQ, M + oP} = 1 + N + M

Now Theorem 1 implies that

is continuous for y E (a, b) and thus

CCy) = (ao(y), ... , aN(y), 0,..., 0; bo(Y),'''' b"ly), 0,... , 0)

Q.E.D.

is likewise continuous for y E (a, b).
We now present four examples of various possible types of discontinuities

of CCy). In each case D = [-1, 1] X [-1, 1] as usual.

EXAMPLE 2.

~y+1+!x
F(x, y) = ( 1 i ix '

-1 ~ x ~ 1
-1 ~ y < 0
-1 ~ x ~ 1
O~y~1
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Then the best approximation to Fix) from ~(l, 1) is R(C(y); x) =Flx), and

EXAMPLE 3.

C( ) = I(y + 1, !; 1, t)
y) 1(1,0;1,0)

(y + 1 + tx
, 1 + tx '

F(x, Y) = i 1
2y + 1 + tx

1 + ix

-l,s:;y<O
O,s:;y,s:;1.

-1 ,s:; x ,s:; 1
-1 ,s:; y < 0
-1 ~ x ,s:; 1
y=O
-1 ,s:; x ,s:; 1
O<y~l

Then the best approximation to Fy(x) from 1R(1, 1) is again R(C(Y); x) =
FvCx) and

, ( --L 1 1. 1 1)\ Y I '2' ,"2,
C(y) = \ (1,0; 1,0),

te2y + 1, t; 1, t),

-l,s:;y<O
y=o
O<y,s:;l

In both Examples 2 and 3 C(y) has a property that will enable us to adjust
the discontinuity at y = 0, and to define a modification of the best ratinoal
product approximation. In particular if we let

for -1,s:; y < 0
for 0 < y ,s:; 1 (13)

then the functions Ao , AI, Bo and B1 exist and are continuous on [-I, 1].
Furthermore

Q(Bo(Y); x) > 0 and for -1,s:; y ,s:; 1.

In the following two examples this property does not hold and the
adjustment will not be possible.

EXAMPLE 4.
F(x, y) = x + IY I.

Then the best approximation to Fix) from ~(o, 1) is

R(C(y); x) = _V----"y_
2 -c+_1_

1- x
Vy 2 + 1

R(C(O); x) = O.

y~O
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2 1
C(y) = !(yy:+ 1 ; 1, - yy2 + 1)'

(0; 1,0), y=o

Note that with the convention of (13)

Q(Bo(Y); x) = 1 __/ x _\ y2 + 1

and

Q(Bo(O); 1) = O.

We next consider a more pathelogical example.

EXAMPLE 5.

F(x,O) = 1

y#O

Then the best approximation to Fix) from 1R(2, 1) is R(C(y); x) =Fix), and

C(y) = I(1, ~ (y + sin~); 1, ~ sin~),
((1,0; 1,0),

y#O

y = O.

In each of the above examples .A(C(y)) is constant for -1 ~ y < 0 and
for 0 < y <; 1. Other examples involving still other types of discontinuities
of C(y) can be constructed.

We now propose a method for combating the varieties of discontinuities
encountered in Examples 2 and 3. For simplicity we consider only Example 3.

Define the functions

l( )() -l~x~l
y + 1 + tx 1 + lx , 0-1 ~ Y <;

P*(A*(y); x) =

(
1 1 -1~x~1

2y + 1 + aX)( + tx), 0 < y <; 1

and Q*(B*(y); x) = (1 + tx)(l + lx) on D = [-1, 1] x [-1, 1] and
consider the rational function

* * . _ P*(A*(y); x)
R (C (y), x) - Q*(B*(y); x) , on D.
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For each y such that -1 ;;;:;; y ;;;:;; 1, R*(C*(y); x) ¢: ~(1, 1). Thus this
rational approximation is not of the originally chosen form. Furthermore,
for each y E [-1,0], P*(A *(y); x) and Q*(B"'(y); x) have the common
factor 1 + tx. Similarly, for each y E (0, 1], p* and Q* have the common
factor 1 + tx. Thus, for each y E [-1, 1]

R*(C*(y); x) ¢ ~(2, 2).

However if we define

1R*(n, m) = !~ :degree of P ;;;:;; n, degree of Q ;;;:;; Tn!
and Q > 0 on [-1, l]j"

then, R*(C*(y); x) E ~*(2, 2) for each y E [-1, 1].
Furthermore

1

-I;;;:;;x;;;:;;1
R*(C*(y); x) = F(x, y) for and

-1 ;;;:;; y < 0 or 0 < y ;;;:;; 1

and

C*(y) =

-1 ;;;:;; y ;;;:;; 0

which is continuous on [-1, 1].
The rational approximation R* obtained as above is not in general best

in the enlarged class of rational functions.
We now generalize this procedure. As usual, for each fixed y E [ -1, 1]

let R(C(y); x) denote the best approximation to Fy(x) from ~(n, m). Suppose
that C( y) is continuous on [-1, 1] except at y = y*. Let

!

P(AO(y); x)

R(C(y)' x) = Q(Bo(Y); x) ,
, P(Al(y);x)

Q(Bly); x)'

-1 ;;;:;; x;;;:;; 1
-1 ;;;:;; y < y*
-1 ;;;:;; x;;;:;; 1
y* < y ;;;:;; 1

(14)

where Q(Bo(Y); x) and Q(Bl(y); x) exist and are positive for -1 ;;;:;; x ;;;:;; 1,
-1 ;;;:;; y ;;;:;; 1. Note that Examples 4 and 5 fail in this regard.
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and

n+m

P*(A*(y); x) = L ai*(Y) Xi
i~O

!
P(AO(Y); X) Q(Bl(y); x),

= P(Al(y); x) Q(Bo(Y); x),

-1 ,,:;; x":;; 1
-1 ,,:;; y < y*
-1 ,,:;; x < 1
y* <y < 1

(15)

and

2m

Q*(B*(y); X) = L b/(y) Xi = Q(Bo(Y); X) Q(Bl(y); X) on D (16)
i~O

* * " _ P*(A*(y); x)
R (C (y), x) - Q*(B*(y); x) , on D. (17)

We note some of the properties of the function R*(C*(y); x).

Remark 1. R*(C*(y); x) = R(C(y); x), on D, except possibly aty = y*.

Remark 2. Suppose further that Ao(Y) is continuous on [-1, y*], Al(y)
is continuous on [y*, 1], Bo(Y) and Bl(y) are continuous on [-1, 1] and

lim R(C(y); x) = lim R(C(y); x),
y~y*- y--?y*+

for -1":;; x ,,:;; 1. (18)

Then C*(y) = (A *(y); B*(y)) is continuous on [-1, 1].

Proof By (16), B*(y) is continuous on [-1, 1]. Equation (15), the
continuity of Ao(Y) on [-I,y*] and the continuity of B1(y) on [-1,1]
imply that limll->y,- A *( y) = A *( y *). Equation (18) implies that

lim P*(A*(y); x) = lim P*(A*(y); x).
y-'7y*- y---7y*+

Thus limy4y*- A*(y) = limy_>yH A*(y), and therefore A*(y) is continuous
on [-1, 1].

Furthermore we note that while R(C(y); x) E !R(n, m), in general
R*(C*(y); x) E !R*(n + Tn, 2m) - !R(n, m) for each y E [-1, 1].

Under the hypothesis of Remark 2 we define the modified best rational
product approximation T*(x, y) by

T *( ) "n+>n H*( ) .
p x, Y £"'i~O~' Y x'

T*(x, y) = T Q*(x, y) = L~:'o GfJ~(Y) Xi '

when as usual we choose H;. and G'/f. as best uniform approximations• 1",
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-1 ~ x ~ 1
-1~y<Y1

-1 ~ x ~ 1
h < Y < Y2

(either polynomial or rational) to a;* and b/\ respectively, on [-1, 1], for
i = 0, ... , fl + m andj = 0,..., 2m.

This procedure can be extended to more than one point of discontinuity,
Suppose that -1 < Yl < Y2 < ... < Yk < 1 and that C( y} is continuous
on [-1, IJ except at Y = y;, i = 1,2,... , k. Let

: P(Ao(Y); x)
l Q(Bo(y); x) ,
, P(Al(y); x)

R(C(y); x) = Ii ~(~IC~); ~'(). .

P(A1cCy); x) -1 ~ x ~ 1
Q(Bk(y); x) , Yk < Y ~ 1

where Q(Bi(y); x) > 0 for -1 ~ x ~ 1, -1 ~ y ~ 1 and i = 0,1,..., k.
Define

k

Q*(B*(y); x) = nQ(B;(y); x)
j~O

k

7i;{x, y) = nQ(B;(y); x),
j=1I
j=t=i

i = 0, 1,... , k

and

l
'P(Ao(y); x) 7To(x, y),

P*(A*(y); x) = ~(~l(~);~) ~l(-~' y:,

P(Ak(y); x) 7Tk(X, y),

-l~y~Y1

Y1<y~Y2

Finally, define the approximation

* * ., _ P*(A *(y); x)
R (C (y), x) - Q*(B*(y); x) on D.

In general R* E 1R*(n + kin, (k + l)m). Thus, for large values of k, R* may
have a very large number of parameters.

We can then define the modified best rational product approximation as
before.

3. COMPUTATION

The computation of the best rational product approximation first requires
the computation of R(C(y); x) for -1 ~ y ~ 1. In general, this is not
possible. Instead we often choose a finite set of points {Yi}~~l such that
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-1 ~ Y1 < Y2 < '" < Yk ~ 1, and compute R(C(Yi); x) for i = 1,2,... , k
(see [9] algorithms 1 and 2).

Several methods for computing best rational approximations are discussed
in Cheney and Southard [2]. These algorithms are most successful when a
good initial guess at the best approximation is available. Whenever C(y) is
continuous and Yi and Yi+l are sufficiently close, R(C(Yi); x) is a good
approximation to R(C(Yi+l); x).

Iterative procedures such as the Remez exchange algorithm require a good
guess at a characteristic point set for the best rational approximation. Such
a point set is defined in the following characterization theorem (see Rice [8],
p.80).

THEOREM 3 (Characterization). R(C; x) E !R(n, m) is a best approximation
to F(x) E C[-1, 1] if and only if there exist j{(C) + 1 points

-1 ~ Xo < Xl < '" < XJI(C) ~ 1

such that

I R(C; Xi) - F(Xi) [ = sup I R(C; x) - F(x)l,
XE[-l.l]

and

i = 0, 1,... , .A(C), (19)

i = 0, 1,... , .A(C) - 1.

Such a point set {Xi};::-~C) is called a characteristic point set for the best
approximation R(C; x). Any point Xi satisfying (19) is called an extreme point
for R(C; x) - F(x).

A characteristic point set for R(C(Yi); x) often provides a good initial guess
at a similar point set for R(C(Yi+l); x), i = 0, 1, ..., jt(C). This was shown
for product polynomial approximations in [9]. The proof of the rational
analog is identical with the proof for the polynomial case. Thus we omit the
details and state the following theorem:

THEOREM 4. Given an e > ° and y* E [-1, 1], there exists a 8 =

S(e, y*) > ° such that for -1 ~ Y ~ 1 and IY - Y* I < 0, any extreme
point for R(C(y); x) - F(x, y) is within e distance of some extreme point for
R(C(y*); x) - F(x, y*).

COROLLARY. Suppose that there are exactly k extreme points for
R(C(y); x) - F(x, y) for each y such that -1 ~ y ~ 1. Then there exist k
continuous functions xlC'), xk), ... , XT.:C') such that for -1 ~ y ~ 1,
-1 ~ xI(Y) < x 2(Y) < ... < Xk(Y) ~ 1 are the extreme points for
R(C(y); x) - F(x, y).
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In addition to knowing the approximate location of a set of characteristic
points it is useful to have a good estimate for ./t(C(y» the degree of the best
approximation. The following theorem shows that there is often a useful
relation between ./((C(y;» and .,,{!(C(Y;+l».

THEOREM 5. Given any y* E [-1, 1] there exists a [) = 8(y*) > 0, such
that -1 ~ y ~ 1 and I y - Y* I < 8 imply that

J!(C(y)) ~ Jlt(C(y*»).

Proof If R(C(y*); x) = 0 then J!(C(y*» = n + 1. For any

YE[-I, 1]....l!(C(y» ~ 11 + L

(20)

Now suppose that R(C(y*); x) -;- 0 and that the theorem is false. Then
there exists a sequence {y;} such that

Yi ---+ y* as i ->- CfJ

and
./((C(y;» < ./((C(y*».

Let R(C(y,); x) = PiIQ;. Then as in Theorem 1 either

or

oP; ~ .;f1(C(y;» - m - I < ./1(C(y*» - 111 - 1 (21)
and

OQi ~ Jlf(C(Yi» - 11 - 1 < Jlt(C(y*» - 11 - L (22)

Next we note that

p(Y) = sup IFix) - R(C(y); x)!
-l~X<l

is continuous for -1 ~ y ~ 1, and that

p(y*) ~ sup IFy.(x) - R(C(y,.); x)1
-l<x<l

~ P(Yi) + sup 'Fyix) - Fy.(x) I
-1';;;"'<;;1

Therefore

I.im sup IFy'(x) - R(C(y;); x)1 = p(y*).
1--7CX) -1<X<1

(23)
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Furthermore, for all R(C; x) E lR(n, m) there exist positive constants K and L
such that

sup I R(C; x)1 ~ K
-1';;",';;1

implies that

[[ CII = max{j ai I: i = 0,..., n, [bj I:j = 0,... , m} < L

where C = (ao ,..., an ; bo ,.•. , bm) (see Rice [8] p. 75). Therefore (23) implies
that {R(C(Yi); x)} is a uniformly bounded sequence.

Hence there exists a subsequence {C(Yi )} converging to C E En+m+2 • Let_ v_

R(C; x) denote the element in lR(n, m) associated with C. That is Rice
[8, p. 77] shows the existence of a C such that

lim R(C(Yi); x) = R(C; x)
l'-700 V

except at possibly a finite number of points in [-1, 1].
Let R(C; x) = PIQ. Then either

P
Q == 0

or by (21) and (22)

and
oP < .A(C(y*)) - m - 1

oQ < .A(C(y*)) - n - 1.

(24)

(25)

However, Eq. (23) and the uniqueness of best approximation in lR(n, m)
imply that C = C(y*). Thus

P
Q 70,

and
.A(C) = .A(C(y*)).

But, by (24) and (25)

.A(C) = 1 + max{n + oQ, m + oP} < .A(C(y*)) (contradiction).

4. ERROR BOUNDS

In this section we bound the quantity II F - T* II where T*(x, y)
is the modified best rational product approximation to F(x, y) on
D = [-1,1] x [-1,1], and

1\ G 1\ = sup I G(x, Y)I·
(""y)eD
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Similar estimates for the quantity II F - T II where T(x, y) is the best rational
product approximation to F(x, y) on D are given in [4].

Suppose that C(y) is continuous on [- I, 1J except at Y1 < Y2 < ... <)'",.

Let Y* = [-1, 1]-{Yl ,Yz ,... , YIJand let T*(x,}') = [Tp*(x,y)]/[TQ"(x, y)]
be the modified best rational product approximation to F an D. As in
Remark 1 of Section 2,

R*(C*(y); x) = R(C(y); x)
for

Furthermore, both

-1 ~ x :(:: 1 and J'E y*

and

-~~~l IFix) - R*(C*(y); x)1

max IFix) - R(C(y); ;\")i
-l~x~l

are continuous functions of y E [- I, I], even though C(Y) is discontinuous
at Y1 ,... , Yk . Then

II F - R* II = max { max IF(x, y) - R*(C*(y); x)l}
-1 ~)':.o::;;l -1 ~x~l

= max { max IFix) - R*(C*(y); x)!}
-1 ~y~l -1 ~x~I

= sup { max IFy(x) - R*(C*(y); x)!}
'YEY* -1 ~x~l

= sup { ~ax I Fy(X) - R(C(y); x)l}
YeY* -l..:::::::x~l

= max { max IFix) - R(C(y); x)1}
-1 ~y<l -1 ~x=S:;:l

(26)

where

En.",(g) = inf{ max Ig(x) - R(C; x)1 : R(C; x) E !R(n, m)} (27)
-l~x<l

* * _ p* Tp * _ (p* - Tp *) T o* + (To* - Q*) Tp'"
R - T - Q* - T o* - Q*To*

Let

and

EQ* = II Q* - T Q * II, Ep* = IiP* - Tp*11

min I Q*(B*(y); x)! = 111Q*.
-l<x~l
-l';;;y';;;l
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Then

and

II Tp* II ~ II p* II + Ep *, II TQ* II ~ II Q* U+ EQ*

min I TO*(x,y)1 ?:: mO* - EO*
-l~x~l
-1";;y";;l

where we assume EQ* < InQ*.

Therefore

II R* - T* II ~ Ep*[11 Q* II + EO*] + <:0*[11 p* II + Ep*] (28)
mo*(mo* - EO*)

Combining (26) and (28) we obtain

II F - T* II ~ \I F - R* II + II R* - T* II
< max E (F) + Ep*[ll Q* II + EO*] + Eo*[li p* II + Ep*]
'--" -1";;y";;l n,m Y mo*(mo* - EO*) (29)

Furthermore, suppose that
n+km

P*(A*(y); x) = L Oi*(Y) Xi
i~O

and
n+km

Tp*(x,y) = L H:;Cy)Xi
i~O

where H:(y) is some best approximation (either polynomial or rational) to
ai*(Y) on'[-I, I], for i = 0,1,..., II + km. Then,

n+km

Ep* = II P* - Tp* II ~ L. max I a;*(y) - H;{y)!.
i=O -l~y~l l

Similarly,
(k+1)m

t:o* = \I Q* - T 0* 1\:(: L max I b;*(y) - Gt{Y)I,
j=O -l~y~l J

where Gt,(y) is some appropriate approximation to bj*(y) on (-1, 1], for
j = 0, 1,... , (k + l)m.

The above can be utilized to show that we can often obtain an arbitrarily
good modified rational product approximation. Given any € > 0 an nand m
may be selected to ensure that

€
max En,m(Fy) < 2

-l~y~l

(see [9], p. 444).
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We then choose the approximations H;, i = 0, 1, ..., n + km, and G; .
j = 0, 1, ... , (k + l)m sufficiently well so th~t '

Ep*([[ Q* II + EQ*] + EQ*[I[ p* II + Ep*] E
*( '" *) < -2 .mo mQ· - EO

Then (29) implies that II F - T* II < E. The above analysis establishes the
following theorem.

THEOREM 6. Let FE C[D). Given E > °there exists an neE) and m(E) such
that if R(C(y); x) is the best rational product approximation to F" on [-1,
then

(30)

Suppose that C(y) is continuous on [-1, IJ except possibly at ajinite number
of points. If these discontinuities are such that the R*(C*(y); x) of Section
2 exists, and if T*(x, y) is the modified best rational product approximation,
then the best uniform approximations (either polynomial or rational) H:(y)
and Gt(y) to ai*(Y) and b/(y), respectively, i = 0, 1,... , n + km, j = 0, 1', ... ,
(k + l)m, may be selected to ensure that

II R*(C*(y); x) - T*(x, y)l; < Ej2.

If inequalities (30) and (31) are valid, then

IIF- T*II < E.

We conclude this paper with an example.

(31)

EXAMPLE 6. Let Fl(x, y) = I x I + [y I + 1, Flx, Y) = Ix II y I + L
Again D = [-1, 1] x [-1, 1], and suppose that approximation is from
~(n, n), n even, n > 4.

Then R(C(y); x) = R(C; x) + I y I + 1, where R(C; x) is the best
approximation from lR(n, n) to I x I on [-1, 1]. Thus

C(y) = [ao + bo([ y I + 1),... , an + b,,(i y I + 1); bo , , bn ]·

That is, ai(y) = ai + M[ y [ + 1), My) = hi, i = 0, 1, , n. We now
suppose that Ho .(y) and G/3( y) are the best approximations from ~(n, n) to
ai(Y) and bi(y), ~espectivelY.

Then
Haly) = ai + MR(C; y) + 1),

and
G/3ly) = bi , i = 0,... , n.



22 HENRY AND WEINSTEIN

Therefore the best rational product approximation Tl satisfies

I Fl(x, y) - Tl(x, Y)I

~ IFlx) - R(C(y); x)1 + I R(C(y); x) - Tix, y)

I
L:o ai(y) Xi L;=o H"ly) Xi I

~ II x I- R(C; x)1 + L:o b;(y) Xi - L;=o bi(y) Xi

I
L;=o M! y I - R(C; y)) Xi I

~ 3e-v'n +
L:~o bixi .

This implies that

Similar analysis shows that

II Flx, y) - Tlx, Y)I\ ~ 15e-v'n,

where T2 is the best rational product approximation to F2 •
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