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1. INTRODUCTION

The subject of this paper is the rational Chebyshev approximation of a
continuous real valued function of several real variables. For simplicity
our attention is focused on functions defined on the rectangle D =
[—1,1] x [—1, 1]

Let F be a continuous real valued function defined on D. For
each A4 = (a4, Any, ) € E%Mﬁ... o, tntl and each B = (by,..., bmum) €
Eyvupeoru, vms1 define R to be the class of rational functions of the form

P(A; X)) | Ty Tt @iyt

R C7 x: ) = - m g ?
(©x2) OB; x,3) ¥ 3 baxy!

M

where C = (4; B) and Q(B; x, y) > 0 on D.
We formulate the problem of best rational Chebyshev approximation to F
from R as follows. An element R(C*; x, y) € R is sought such that

sup l F(xa J’) - R(Cn X, J.)[

(x,y)eD

is a minimum for C = C¥*. R(C*; x, y) is called a Chebyshev approximation
or a best uniform approximation to F.
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The following example demonstrates that a best uniform approximation
from R to a given F € C[D] may not exist.

ExampLE 1. Let

G 4 L SES)
‘ . —l <yt
F(x,y) = X-+y+2 lex<l

x-+1

¥ i
and consider the class of rational functions R = {R{C; x)}, where R(C; x} is
(Dwithn=2m=1,v,=2andm; =1,{=0,1,2,; =90, 1.

For each € > 0 define

(x4 D2 (4 1°

R(CE,-\ })_ r—{—J—ij—e

Then R(C,;x,y)— F(x,y) uniformly on [—1,1} x{—1,1] as ¢ — 0.
However, F¢ R,

Loeb [6] showed that even when a continuous function £ possesses a best
approximation R, uniqueness could only occur if an appropriate vector space
is a Haar space. The scarcity of multidimensional Haar spaces was
demonstrated by Mairhuber [7].

The lack of existence or uniqueness of a best approximation and the
accompanying computational difficulties have been a roadblock in ths
development of rational Chebyshev approximation. To overcome these
problems, Henry and Brown [4] introduced best rational product approxi-
mations as follows.

We first define a class of rational functions. Let

_ P45 %) Zzgm .
OB, x) 37 byx

R(C; x)

where C = (4; B) = {dy, @4 oerrr 85 5 by 5 by ..., by,) satisfies

(i) Q(B;x)>0forall xe[-—1,1];
(iiy P(4; x) and Q(B; x) have no common factors other than constants;
and
{/lll) maXj,..., m ] b I =L
DervitioN 1. Let R(n, m) denote the class of rational functions consisting
of all R(C; x) as above satisfying conditions (i}, (ii) and (iii}, and the
zero function which we allow the unique representation R(Cy; x} where
Co =1(0,0,..,0;1,0,..,0).
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DreriniTiON 2. For each fixed ye[—1, 1] let F, denote the univariate
function defined for —1 << x << —1 by

Fy(x) = F(x, y). (3)
Let
RC(y); ) — £A0X2) ¥

denote the best uniform approximation to F,(x) from R(n, m). That is
SUP_y<a<a | Fy(x) — R(C; x)| is a minimum for C = C(y) = (4(y); B(¥)).
Note that for each y e [—1, 1] there exists a unique choice for C(y) and thus
it is a well defined function.

DerFmuiTioN 3. Let the components af{y) and b,(y) of the vector C(y)
be best approximated in the Chebyshev sense on [—1, 1] by, respectively,

P.(y)= i anyk, i=0,1,..n 5)
pai
and
Os(¥) = gobny‘, Jj=01..m (6)
Then,

To(%,¥)  Zig P X Tisg Laly ayxiy®
Tolx,y) z;.’;o 00D Y N

T(x,y) = @)

is called the best rational product approximation, with respect to y.

In general this approximation may not exist. If C(y) is continuous then the
approximations P, (») and Qs, () exist. Furthermore we must insure the
nonvanishing of the denominator Z i~0 @g,(¥) x’. This can be achieved by
selecting the degrees u;, j=0,1,..., m sufficiently large so that
im0 Qs () X' > 0. This is possible since Sobi(»)x! >0 on [—1, 1] x
[—1, 11

With the continuity of C(y) and sufficiently large degrees u; ,j = 0, 1,..., m
the best rational product approximation exists and is unique. In Section 2
we consider sufficient conditions for the continuity of C(y), various possible
types of discontinuous and a method to combat the most common varieties.

Two alternatives to Definition 3 have been considered in the literature.
If the variable x is fixed first, rather than y, then a product approximation
with respect to x can be similarly defined. It is shown in [9] that in general
these two approximations are distinct. A second alternative is to approximate
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the components a,( y) and b,( y) by rational functions rather than polynomials.
This variation is considered in [4]. Either variant is handied analogously to
that considered below.

2. THE CONTINUITY OR DISCONTINUITY OF THE VECTOR C(3)

We now consider sufficient conditions for the continuity of the parameter
vector C(y).

DErFINITION 4. R(C; x) = [P(4; x)/Q(B; x)] € R(n, m) is said to be of
varisolvent degree

(1 + max{n -- ¢Q, m + 0P}, RC;xy==0 /2
14 n, RC;x) =0 &
where ¢P and 40 denote the degrees of P(4; x)} and Q{8B; x), respectively.

Henry and Brown [4] proved the following theorem giving sufficient
conditions for the continuity of the vector C{(»).

M(C) =

THEOREM 1. Suppose that for fixed y* € [—1, 1], #(C(y*)) =n +m - 1.
Then the function C(y) is continuous at y*.

We improve this result somewhat.
THEOREM 2. Suppose that A4 (C(y)) is constant on (a, by C{—1, 1]. Then
C(y) is continuous on (a, b).

Proof. One proof of this result is essentially identical with the proof of
Theorem 1 presented in [4]. As an alternative consider the following:

Let R(C(y); x) = [P(A(y); x)]Q(B(»); x)] denote the best approximation
to F, from R(n, m) and suppose that

HC(p) =k forall ye{a, b)C[—1,1]
Let ¢P and ¢Q denote the degrees of P(A(y); x) and Q(B(¥); x), respeciively.
Case 1. k=mn-+1andn < m.

Then since
1 +-max{n +20,m+ P} =21 +m>1-+n, {9
we must have
. - —1 <x<1
R(C(y);x) =0 for l<y<l

Thus €(3) = C, = (0, 0,..., 0; 1, 0,..., 0) for —1 <y < 1.
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"Case 2. Either k =n+1 and n>m, or k >n-+1. Then k >
max{l 4+ n, 1 + m}.
The following iemma combined with Theorem 1 completes this proof.

LemMA 1. Ler R(C(y); x) and k be as in Case 2 and let
N=k—m-—1 and M=k—n—1. (10)

 Then R(C(y); x) is also the best approximation to F, from the class R(N, M)
and has degree N + M +- 1 in that class. (Note that the degree of a rational
Sfunction depends on which class of rationals we are considering.)

Proof. Since R(N, M) C R(n, m), if R(C(y);x) =0, then #(C(y)) =
n+1,N=n—m, M = 0and R(C(); x) is also the best approximation to
F,in R(N, M). Furthermore, R(C(y); x) =0hasdegree]l + N=1+N-+M
in that class.

If R(C(y); x) == 0 then

1 +n+400 <k, orequivalently, 00 <k —-n—1=M (11)
and
1+m-4-0P <k, orequivalently, 0P <k —m—1 =N, (12)

with equality holding in at least one of (11) and (12).
Therefore R(C(y); x) € R(N, M), and in this class R(C(»); x) has degree

1 +max{N + Q. M+ 0P} =1+ N+ M Q.E.D.
Now Theorem 1 implies that
(@o(¥)se-er AN ()5 Bo(9)s-e0s Dae( )
is continuous for y € (a, b) and thus

C(y) - (aﬁ(y)s"': aN(y)? 0:"'7 0: bo(y):---a bM(y)a 0:"'5 0)

is likewise continuous for y € (a, b).
We now present four examples of various possible types of discontinuities
of C(»). In each case D = [—1, 1] x [—1, 1] as usnal.

EXAMPLE 2.
—1<x<1
1 = A s
F(x,y) = 'yTiJrIxQ_A’ -1 <y <0
>V 12 ___1<x<1

0<y<lt
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Then the best approximation to F,(x) from R(1, 1) is R(C{y); x) = F(x), and

Cyy= I(1,0; 1, 0) 0<y <.
EXAMPLE 3.

— I <x <1
) A 1, =S =
yrled o

1+ 4x S
—l=<x<1

F(x,y) = 1 .

! 1

2—}%}5—& 1< x <
o 0<y<i

Then the best approximation to F,(x) from R(}, 1) is again R(C(Y); x) =
F,(x) and

‘(y+17%;172): ”‘1<} <0
C(y) = (15 07 150 > ) = Q
?(2y+1,%:; LY, o<y«

In both Examples 2 and 3 C(y) has a property that will enable us to adjust
the discontinuity at y = 0, and to define a modification of the best ratinoal
product approximation. In particular if we let

N o (Ao(¥); Bo(3)) for —1 <y <0 s
COY = |CeOn BOY  for 0 <y =1 a3)

then the functions 4, , 4,, B, and B, exist and are continuous on [—1, 1],
Furthermore

OB(»);x) >0 and  Q(By(y);x) >0 for ~i<<y<L

In the following two examples this property does riot hold and the
adjustment will not be possible.
EXAMPLE 4,
Fx,y) =x+ [yl
Then the best approximation to F,(x) from R(0, 1} is
y'Z

ROy =YL
1

R
R(C(0); x) = O.

h
h
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Thus

> 1
5 19 - > )~ 0
co =G e 770
(0; 1, 0), y =

Note that with the convention of (13)

. — — X —
OB M) =1 ==y

and
O(By(0); 1) = 0.

We next consider a more pathelogical example.

EXAMPLE 5.

1+%(}’+sin§)x

F(x5y): s _)’#0

1 .1
1+ (zsm;)x
F(x,0) =1

Then the best approximation to F,(x) from R(2, 1) is R(C(y); x) = F,(x), and

iy — (L3 (p+sn)itgsing), v =0
(1, 0; 1, 0), =0,

In each of the above examples .#(C(y)) is constant for —1 < y <0 and
for 0 < y <C 1. Other examples involving still other types of discontinuities
of C(y) can be constructed.

We now propose a method for combating the varieties of discontinuities
encountered in Examples 2 and 3. For simplicity we consider only Example 3.

Define the functions

—1<x<1

(v + 1+ 3901 + ), s
(4% -1 <y=<0
PHAX(p); %) = l<x<l
3 1 1 SR
IR DU N

and Q*(B*(y);x) = (1 + 3x)(1 +3x) on D =[—1,1] x [—1,1] and
consider the rational function
PHAXNY;X) o p

R¥C*(p); x) = FECE O R
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For each y such that —1 <y < 1, R¥C*(y); x) € R(i, 1}. Thus this
rational approximation is not of the originally chosen form. Furthermore,
for each ye[—1,0], P*(A*(y); x) and Q*(B*(y); x) have the common
factor 1 4+ Ix. Similarly, for each y e (0, 1], P* and Q* have the common
factor I + ix. Thus, foreach ye[—1, 1]

R¥C*(y); x) € R(2, 2).

However if we define

R*(n, m) = g : degree of P < n, degree of Q

o and 0 > 0on [— }'

then, R¥(C*(»); x) € R*(2, 2) for each ye [—1, 1].

Furthermore
—1 <x<1
R¥C*(y); x) = F(x,y) for and
—I<<y<0 or O0<y<1
and
(prrl+intinl.g, —1<y<o
.oy 6 6’6/

+1Lieninlg, o<y<i

which is continuous on [—1, 1].

The rational approximation R* obtained as above is not in general best
in the enlarged class of rational functions.

We now generalize this procedure. As usual, for each fixed ye[—1, 1}
let R(C(y); x) denote the best approximation to F,(x)} from R(x, m). Suppose
that C{y) is continuous on [—1, 1] except at y = y*. Let

P(Ay(3); x) ~1<x <
L YoBO) D 1<y <y
REDD =1 pa(v))  —1<x<1 (%)

oB,(y)x)’ y*<y<i

where Q(B,(»); x) and Q(B;(»); x) exist and are positive for —1 < x < 1,
—1 < y < 1. Note that Examples 4 and 5 fail in this regard.
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Now define
ntm
PHAX(p); x) = Y aX(y) x*

=0
-1 <x<1

Py %) QBOR D, ) 2T T

PG B 0BG 1<x<1 @
lJax) 0.}9x3 y*<y<1
and

2m

O*(BX(y); x) = 2 bi*(y) x' = Q(B(»); x) Q(By(y); x) on D (16)

and

PHA*(p); X)

o 250 on D. 17
O*(B*(y); x) an
We note some of the properties of the function R*(C*(y); x).

Remark 1. R*(C*(y); x) = R(C(»); x), on D, except possibly at y = y*.

Remark 2. Suppose further that 4y(y) is continuous on [—1, y*], 4,(»)
is continuous on [ y*, 1], By(y) and B,(y) are continuous on [—1, 1]and

R¥C*(y); x) =

lim R(C(»); x) = lim+ R(C(»); x), for —1 <x<1. (18
yoy*T o p*

Then C*(y) = (A*(y); B*(3)) is continuous on [—1, 1].

Proof. By (16), B*(y) is continuous on [—1, 1]. Equation (13), the
continuity of A4,(y) on [—1, y*] and the continuity of B,(¥) on [—1, 1]
imply that lim, .. 4¥(y) = A*(y*). Equation (18) implies that

Iim P*(4*(y); x) = Hm P*(4*(y); x).
yoyET yoy*t

Thus lim,,,« A*(y) = lim,.« A*(y), and therefore 4*(y) is continuous
on[—1, 1}

Furthermore we note that while R(C(¥); x) e R(n, m), in general
R*(C*(y); x) € R*(n + m, 2m) — R(n, m) for each y e [—1, 1}.

Under the hypothesis of Remark 2 we define the modified best rational
product approximation T*(x, y) by

m .
ey — D) i, Hi() X
Y ETFE Y T T G

when as uvsual we choose H; and Gj as best uniform approximations
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(either polynomial or rational) to a;* and b;*, respectively, on {—1, 1], for
i=0,..,n+mandj=0,.., 2m.

This procedure can be extended to more than one point of discontinuity.
Suppose that —1 < y; < y; < *- <y < 1 and that C(y) is continuons
on[—1,1]exceptaty = y,,i =1,2,.., k. Let

i P(Ay(); x) —1<x<1
\Q(Bo(y); 0 —l<y<n
PG Y  ~l<x<l1

RIC(); %) = OBy X) 51 <y <
P(A(»); ) -1 <<x<!
OBy x)" <y <li
where OQ(B(y); x) >0for -1 <x <1, -1 <y<landi =20 L. k.
Define

O*(BX(y); x) = l:([) OB(»); ©)

%
(x5, 3) = [T 0By} %), =01,k

2
and

P(A(y); x) molx,y), —1<y<n

Prax(y; ) = {TAOE DTN, <y <

PA(y); ) mlx, ), s <y < L
Finally, define the approximation
PHA*(y); x)
Q¥(BX(y); x)
In general R* € R*(n + kin, (k 4 1)m). Thus, for large values of k&, R* may
have a very large number of parameters.

We can then define the modified best rational product approximation as
before.

R¥C*(y); x) = on D.

3. COMPUTATION
The computation of the best rational product approximation first requires

the computation of R(C(y); x) for —1 << y < 1. In general, this is not
possible. Instead we often choose a finite set of points {y;}%, such that

640/12[1-2
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—1l <y <y, < <y <1, and compute R(C(y;); x) fori =1,2,...,k
(see [9] algorithms 1 and 2).

Several methods for computing best rational approximations are discussed
in Cheney and Southard [2]. These algorithms are most successful when a
good initial guess at the best approximation is available. Whenever C(y) is
continuous and y; and y;,, are sufficiently close, R(C(y,); x) is a good
approximation to R(C(y;.,); x).

Iterative procedures such as the Remez exchange algorithm require a good
guess at a characteristic point set for the best rational approximation. Such
a point set is defined in the following characterization theorem (see Rice [8],
p- 80).

TraeEOREM 3 (Characterization). R(C; x) € R(n, m) is a best approximation
to F(x) € C[—1, 1] if and only if there exist #(C) + 1 points

—l <KX <x << xpep =1
such that
| R(C; x) — F(x)| = xes[uPI] | R(C; x) — F(x)|, i=01,.,4(C), (19
and ,
R(C; x;41) — F(x;4y) = F(x;) — R(C; x;), i=0,1,..,#(C)—1.

Such a point set {x;};2{" is called a characteristic point set for the best
approximation R(C; x). Any point x; satisfying (19) is called an extreme point
Jor R(C; x) — F(x).

A characteristic point set for R(C(¥,); x) often provides a good initial guess
at a similar point set for R(C(y;,41); x), i = 0, 1,..., #(C). This was shown
for product polynomial approximations in [9]. The proof of the rational
analog is identical with the proof for the polynomial case. Thus we omit the
details and state the following theorem:

THEOREM 4. Given an € > 0 and y* € [—1, 1], there exists a § =
d(e, y*) > 0 such that for —1 <y <1 and |y — y*| < 6, any extreme
point for R(C(y); x) — F(x, y)is within e distance of some extreme point for
R(C(y*); x) — F(x, y*).

COROLLARY. Suppose that there are exactly k extreme points for
R(C(y); x) — F(x, y) for each y such that —1 <y < 1. Then there exist k
continuous functions xy(°), x5(*),..., Xz(*) such that for —1 <y <1,
—1 < x(p) < x(p) < - <x () <1 are the extreme points for
R(C(y); x) — F(x, y).
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In addition to knowing the approximate location of a set of characteristic
points it is useful to have a good estimate for .#(C( y)) the degree of the best
approximation. The following theorem shows that there is often a useful
relation between .#Z(C(y,)) and #(C(y;.4)).

THEOREM 5. Given any y* €[—1, 1] there exists a 6 = &(y*} > 0, such
that —1 <y <land|y— y*| < 6 imply that

H(C(y) = H(C(FH). 20)
Proof. If R(C(y*); x) = O then .#(C(y*)) = n + 1. For any
yel—1, 1C(y) = n+ 1.

Now suppose that R(C(y*); x) == 0 and that the theorem is false. Then
there exists a sequence {y;} such that

¥; —> p* as i— o
and
M(C(y))) < A (C(y*)).

Let R(C(y,); x) = P;/Q;. Then as in Theorem 1 either

P,
2 = 0
Q;
or
oP; < M(C(y)) —m — 1 < H(C(y*)) —m — 1 b
and
8Q; < M(C(y)) —n — 1 < H(C(y*) —n — L. (22

Next we note that

p(y) = sup [F(x) — R(C(y): x)|

—15253

is continuous for —1 < y <{ 1, and that

p(¥y*) < sup | Fu(x) — R(C{y); x)|

—1<e<1

< p(y) + sup_ | B, (x) — Fyulx)|

—1<x

Therefore
lim sup | F,«(x) — R(C(yy); x)| = p(¥*). 2%

20 <1
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Furthermore, for all R(C; x) € R(n, m) there exist positive constants K and L

such that
sup | R(C; x)| <

—1<2<1
implies that

ICll =max{|a;|:i=0,..,n | b;|:j=0,.,m <L

where C = (aq ,..., 4y ; by ..., by) (see Rice [8] p. 75). Therefore (23) implies
that {R(C(y,); x)} is a uniformly bounded sequence.

Hence there exists a subsequence {C(y; )} converging to C€ E, .., . Let
R(C; x) denote the element in [R(n m) associated with C. That is Rice
[8, p. 77] shows the existence of a C such that

lim R(C(ys); x) = R(C; x)

except at possibly a finite number of points in [—1, 1].
Let R(C; x) = P|Q. Then either

£. =0
Q
or by (21) and (22)
0P < M(C(y%) —m — 1 24)
and
00 < M(C(y*) —n — 1. 25)

However, Eq. (23) and the uniqueness of best approximation in R(s, m)
imply that C = C(y*). Thus

=0,

Qll e

and _
M(C) = M(C(y*)).

But, by (24) and (25)
M) =1 4+ max{n + 00, m + 8P} < M (C(y*)) (contradiction).

4. ERROR BOUNDS

In this section we bound the quantity ||F — T*| where T*(x,y)
is the modified best rational product approximation to F(x,y) on
D =1[-1,1] x [—1, 1], and

Gl = sup | G(x. )l

%, y)eD
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Similar estimates for the quantity || F — 7| where T(x, y) is the best rationai
product approximation to F(x, y) on D are given in [4].

Suppose that C(y) is continuous on [—1, 1] except at y; << ¥, < =+ < ¥ -

Let Y* = [—1L 1]~{y1, ya,.... yup and let T(x, y) = [Tp*(x, )Y To™(x, 1]
be the modified best rational product approximation tc 7 on D. As in
Remark 1 of Section 2,

R¥C*(y); x) = R(C(y}; x}
for

—I<<x<1 and ye¥*

Furthermore, both

_max | F,(0) — R¥(C*(3); )
and
max | F,(x) — R(C(y); x)i

—1<x

are continuous functions of y € [—1, 1], even though C(y) is discontinuous
at yy,..., ¥ - Then

IF—R*|| = max { max |F(x,y)— RNCHy); %)}

—l<y<sl —1sx

= max { max JF) — RNCH(y); 2)1}

~1<y<l =i=x

= sup{ max | F(x) — R*¥(C*(y); X))}

= sup{ max | F{x) — R(C{»); )|}

yey* TITSX

= max_ { max EFJ(r) — R(C(y); )}

—I <yl T ~1kx

= max_E,.(F), (26}

—-1<y=i

where
E, . (8 = inf{_lrgyél | g(x) — R(C; x)| : R(C; x) e R, )} (27)

R e = PY T (X TN Tt - (Tg% — 09 T

oY TS 0¥ 75"

Let
=(0* = To*|, e&*=[P*—T*|
and

; *( % ) e *
_min | Q*(B¥(y); x)| = mg*.
—1<<p<l
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Then

and
*lnél'}cn<1 l TQ*(X> ))l mQ — EQ*
—A<y<l

where we assume €* < mp*.
Therefore

< M IQ* L+ eo™ + o[l P* | + ]

IR = T*) < mp*(mp* — €p*)

(28)

Combining (26) and (28) we obtain

| F—T*| <|F— R*|| + || R* — T*||
€p [l Q*H + GQ*]+ EQ*[H P* H+ GP*]

< _max E, o (F) +

mQ*(mQ — €p ) (29)
Furthermore, suppose that
nt+km
PHAX(y); x) = Y a*(y)x
i=0
and
n+km
Te*(x,p) = Y HI (M ¥
=0

where H, *( y) is some best approximation (cither polynomial or rational) to
a*(y)on[—1, 1], fori =0, 1,..,n 4 km. Then,

ntkm
ep* = || P* — Tp*|| < Z _max | a;*(y) — Hi)\
Similarly,
(e+1)m
of =0* —To*Il < ¥ _max |b*() — G,
=0

where G;‘i( y) is some appropriate approximation to b;*(y) on [—1, 1], for
j=0,1..,(k + Dm.

The above can be utilized to show that we can often obtain an arbitrarily
good modified rational product approximation. Given any ¢ > Qannand m
may be selected to ensure that

max E, .(F, )<

-l <yl

(see [9], p. 444).
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a;

7 =0, 1,..., (k + Dm sufficiently well so that
e [l O* I + €o*] + eo*[Il P* || + €p*]

mo*(mo* — %)

We then choose the approximations HY , i = 0, 1,..., 1 + km, and G .

<<
5

Then (29) implies that || F — T*]| < «. The above analysis establishes the
following theorem.

THEOREM 6. Let F e CID). Given € > ( there exists an n(e) and m{e) such
that if R(C(y); x) is the best rational product approximation to F, on [—1, 1],
then

max E, .(F,) < ¢/2. {30}

e B

Suppose that C(y) is continuous on [—1, 1] except possibly at a finite number
of points. If these discontinuities are such that the R*(C*(y); x) of Section
2 exists, and if T*(x, y) is the modified best rational product approximation,
then the best uniform approximations (either polynomial or rational) H;t( i3]
and G,;"J(y) to a;*(y) and b;*(y), respectively, i =0, 1,...,n +km, j =0,1,..,
(k -+ V)m, may be selected to ensure that

| RA(CH(y); x) — TH(x, »)l; < €/2. @3n
If inequalities (30) and (31) are valid, then
| F— T*|| < e

We conclude this paper with an example.

Exampie 6. Let Fi(x,y) =|x|[+{y|+ 1, Kxyp=Ix{lyl +L
Again D =[—1,1] x [—1, 1], and suppose that approximation is from
R(n, n), n even, n > 4.

Then R(C{(y);x) = R(C;x) + |y| + 1, where R(C;x) is the best
approximation from R(n, #) to | x | on {—1, 1]. Thus

C(y) =lao + bl y | + Do @ + 5, y | + 1); B ey Da]-

That is, afy) =a;, + by + 1), b(y) =5;,, i =0,1,..,n We now
suppose that H, () and Gg(y) are the best approximations from R(r, #) tc
a;(y) and b,( ), respectively.
Then
H,(y) = a; + b{R(C; ») + 1},
and
Go(y) = b;, i=0,.,n



22 HENRY AND WEINSTEIN

T

herefore the best rational product approximation 7; satisfies
I Fl(xs y) - T]_(X, }‘)l
< [ Fy(x) — R(C(»); )| + | RIC(y); x) — Ti(x, ¥)

@)X Tiy Hy(y) ¥
o b(y) x* o b(y) x*

)
< lxl = REG + |5

<3+ | Zino bl ¥ — RC3y)
o z;l:o b,-xi

This implies that

(| Fy(x, y) — Talx, ) < 66~V

Similar analysis shows that

“ F2(x= J’) - T2(x7 y)“ < 15@'—‘/5,

where T, is the best rational product approximation to F, .

[54

10.
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